NST PART IB
CELL & DEVELOPMENTAL BIOLOGY

COURSE GUIDE 2019-20

Departments of Biochemistry, Genetics, Plant Sciences, & Zoology
Natural Sciences Tripos Part IB: Cell and Developmental Biology

Aims
The Cell and Developmental Biology course is taught by the Departments of Biochemistry, Genetics, Plant Sciences and Zoology. It can be taken in combination with any other subject in Part IB of the Natural Sciences Tripos, except Materials Science with which it clashes in the Lecture Timetable. The CDB course is a natural follow up to IA Biology of Cells, building as it does on the knowledge of elementary cell biology provided by the first year course. CDB goes much further into the topic, introducing you to the major ideas and current experimental approaches to cell and developmental biology, and in the process will illustrate how molecular approaches complement classical cell biology in finding out the details of how cells carry out their basic processes. The course aims to consolidate and extend your basic knowledge of how cells work, how they interact and how they differentiate. Cell and developmental biology is a rapidly advancing field, and the course will illustrate the excitement of these advances.

CDB provides a framework for further specialised study of molecular, cellular and developmental biology in the third year, including Part II Genetics, Plant Sciences, Zoology, Biochemistry (for which it is a qualifying course as an alternative to IB BMB), and Physiology Neuroscience & Behaviour (PNB). It is also an excellent foundation for the majority of Part II biological subjects.

Objectives
By the end of the course, you should have a knowledge of:

- The cell biology of all major groups of organisms, including microorganisms, plants and animals
- The structure and function of cellular organelles including nuclei, endomembrane system, mitochondria and chloroplasts
- How genome organisation differs in the major groups of organisms
- The complex interactions between nucleus and cytoplasm that determine how cells function
- Basic concepts of how cells become specialised into different types in complex organisms
- How the cytoskeleton is organised and its role in cellular function

You should also have an understanding of:

- the different experimental approaches used for the study of cell structure and function
- how these approaches can be applied to specific problems in cell biology
- how to carry out and interpret simple experiments in cell biology

The course syllabus is defined by the lecture content, but since this can only cover the essentials of the subject, you are encouraged to explore topics further by reading at least some of the references provided in each of the lecture handouts. As well as providing useful material for discussion in College supervisions, this additional reading will help in writing supervision essays and in the examinations at the end of the year.

Learning outcomes
At the end of Part IB Cell and Developmental Biology, you should have developed a knowledge of the major ideas and current experimental approaches in cell biology and developmental biology and should be able to progress to Part II courses in Biological Sciences, including Biochemistry, Genetics, Neuroscience, Pathology, Plant Sciences and Zoology.

Detailed course information is provided at the Cell and Developmental Biology web site: http://www.bio.cam.ac.uk/undergraduate/courses/cdb
Natural Sciences Tripos Part IB: Cell and Developmental Biology

LECTURE & PRACTICAL TIMETABLES 2019 - 20

Lectures are Tue, Thu, Sat at 10am, Biffen Lecture Theatre, Department of Genetics

If more than 160 register for the course, lectures will be held in Zoology Lecture Theatre

Practicals are Fri or Tues, CDB wing, Elementary laboratory, Department of Zoology

There will be staggered start times for all practicals to allow for clashes with lectures

Lecture Timetable: Michaelmas Term 2019

(NB: lectures begin on the first Thursday of Full Term)

Weeks 1-3 (Lectures 1 - 6)
10, 12, 15, 17, 19 & 22 Oct
Dr T Krude
Molecular Biology of the Cell Nucleus I

Weeks 3-4 (Lectures 7 - 9)
24, 26, 29 Oct
Prof E Miska
Molecular Biology of the Cell Nucleus II

Weeks 4-5 (Lectures 10 - 12)
31 Oct, 2, 5 Nov
Dr D Summers
Genetic systems of Prokaryotes

Weeks 5-6 (Lectures 13 - 15)
7, 9, 12 Nov
Prof A Martinez Arias
Gene Expression & Cell Decisions

Weeks 6-7 (Lectures 16 - 20)
14, 16, 19, 21, 23 Nov
Dr C O’Kane
Genome Organisation and Function

Weeks 7-8 (Lectures 21 - 24)
26, 28, 30 Nov, 3 Dec
Dr Juan Mata
Yeast as a Model Organism

Practical timetable: Michaelmas Term 2019

Weeks 1 - 3
11, 15, 18, 22, 25 & 29 Oct
Dr T Krude
Extraction of Nuclear Proteins and Assay of DNA Topoisomerase Activity and Nucleosome Assembly; Analysis of Nuclear & Cytoplasmic Proteins, Chromatin Structure, & Cytoplasmic RNA

Week 4
1 & 5 Nov
Prof A Martinez Arias
Dr D Turner
Studying gene expression with fluorescence

Weeks 5 - 6
8, 12, 15 & 19 Nov
Dr C O’Kane
Mobilisation of a transposable element for targeted expression in *Drosophila*

Weeks 7 - 8
22, 26, 29 & 3 Dec
Dr N Zhang
Analysis of Yeast Transformation
Lecture Timetable: Lent Term 2020
(NB: lectures begin on the first Tuesday of Full Term)

<table>
<thead>
<tr>
<th>Weeks 1-2 (Lectures 25 - 28)</th>
<th>Prof A Smith</th>
<th>Chloroplasts and Mitochondria</th>
</tr>
</thead>
<tbody>
<tr>
<td>14, 16, 18, 21 Jan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weeks 2-3 (Lectures 29-32)</th>
<th>Dr M Segal</th>
<th>Cytoskeleton & Mitotic Cell Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>23, 25, 28, 30 Jan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weeks 3-4 (Lectures 33 - 36)</th>
<th>Prof P Dupree</th>
<th>Membrane Trafficking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 4, 6, 8, Feb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weeks 4-5 (Lectures 37 - 38)</th>
<th>Dr C O'Kane</th>
<th>Coordination of organelle and cellular function</th>
</tr>
</thead>
<tbody>
<tr>
<td>11, 13 Feb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weeks 5-6 (Lectures 39 - 40)</th>
<th>Prof A Webb</th>
<th>Intercellular Communication I</th>
</tr>
</thead>
<tbody>
<tr>
<td>15, 18 Feb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 6 (Lectures 41 - 42)</th>
<th>Dr H Baylis</th>
<th>Intercellular Communication II</th>
</tr>
</thead>
<tbody>
<tr>
<td>20, 22 Feb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weeks 7-8 (Lectures 43 - 48)</th>
<th>Dr T Weil</th>
<th>Insect Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>25, 27, 29 Feb, 3, 5, 7 Mar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Practical Timetable: Lent Term 2020

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Prof J Haseloff</th>
<th>Tools for problem-solving in genomics (Craik-Marshall Bioinformatics Training Facility)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 & 21 Jan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 2</th>
<th>Prof A Smith</th>
<th>Organelle Inheritance in Chlamydomonas</th>
</tr>
</thead>
<tbody>
<tr>
<td>24, 28 Jan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 3</th>
<th>Dr M Segal</th>
<th>Cytoskeleton - data analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 Jan, 4 Feb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 4</th>
<th>Dr C O'Kane</th>
<th>Approaches to critical review</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 & 11 Feb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 5</th>
<th>Prof P Dupree</th>
<th>Membrane Trafficking in Eukaryotic Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 & 18 Feb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 6</th>
<th>Dr H Baylis</th>
<th>Second Messenger Systems and Signalling in Real Time (Demonstration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 & 25 Feb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 7</th>
<th>Dr T Weil</th>
<th>Early Patterning in the Drosophila Embryos (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 Feb, 3 Mar</td>
<td>Dr M Landgraf</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 8</th>
<th>Dr M Landgraf</th>
<th>Early Patterning in the Drosophila Embryos (II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 & 10 Mar</td>
<td>Dr T Weil</td>
<td></td>
</tr>
</tbody>
</table>
Lecture Timetable: Easter Term 2020
(NB: lectures begin on the first Tuesday of Full Term)

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Lectures</th>
<th>Teacher</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>49-52</td>
<td>Prof J Haseloff</td>
<td>Plant Development</td>
</tr>
<tr>
<td></td>
<td>21, 23, 25, 28 April</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>53-55</td>
<td>Dr. Ben Steventon</td>
<td>Fish Development</td>
</tr>
<tr>
<td></td>
<td>30 Apr, 2, 5 May</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>56-58</td>
<td>Dr Naomi Moris</td>
<td>Mammalian Development</td>
</tr>
<tr>
<td></td>
<td>7, 9, 12 May</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Practical Timetable: Easter Term 2020

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Teacher</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Prof J Haseloff</td>
<td>Self-organisation and morphogens in plants (Plant Sciences Teaching Laboratory)</td>
</tr>
</tbody>
</table>
Libraries and Booklist

Using textbooks: Four major textbooks are listed below. These cover the course material at about the right level - sometimes higher and sometimes lower. You should as a matter of course read any relevant chapters in these textbooks.

College libraries should hold most of your needs for books, and you should use these as your first resource. The booklists below are recommended content for all college libraries.

Departmental libraries. The four departments that contribute to this course all have libraries, with special collections of books for Part I courses. All the libraries allow you to read and work there, but some have restrictions on what you may borrow and for how long. To use these libraries, the proper course is to introduce yourself to the Librarian, who will explain the rules to you and show you where to find the relevant books.

Booklist

1. **Books that cover most areas of the course:**

2. **Books recommended for specific areas of the course and for further reading:**

Using references to articles. Lecturers will also refer you to journal articles. These contain much relevant material that can improve your understanding of the material taught. The aim of this reading is to improve your understanding of the material, not to add further large amounts of factual information.

We encourage you to read as many of these articles as possible, but they often contain much more material than you need, or cover it at a level higher than you need to know. It is worth learning how to identify and select the most useful material – a worthwhile skill in its own right! It's a bit like riding a bike: the best way to learn is to practise! Your supervisors will be able to help you to do this.

Moodle. Online resources are provided through the Moodle site. You will automatically be subscribed to this site as part of the NST subject choice procedures but if you join the course after the start of term, send an email to Billy Curtis, the CDB course administrator (cdb@gen.cam.ac.uk), requesting that you are added to the course. You will need to use your Raven ID and password to log onto Moodle, which you will also be able to access during the vacation.
Supervisors may request access to both the main course Moodle site, and a Supervisors’ site that has some additional material such as solutions to Written Practical Problems.

Lecture notes and note-taking. A good lecture is not simply delivering the handout, it is a live performance. The Management Committee is therefore not prescriptive about the style of Lecture Notes used by Lecturers. However, we do expect good practice: this can involve a variety of styles of lecture notes integrated with the overall learning strategy used for each lecture block. Most slides should appear in handouts, with enough context to explain their significance; sources of original material should be referenced. However, the level of detail in the text will vary.

Regardless of handouts, you should aim to take detailed notes in lectures. This is a useful skill to learn, and even with detailed handouts, note-taking means that the route from your ear to your hand goes through your brain. We recognise that some students may have difficulties in taking notes for an entire lecture, and students with a Student Support Document from the Disability Resource Centre are welcome to record the lectures for their own personal study.

Course Feedback. Student feedback is vital for continuous improvement of the course, so we want to get as much feedback from you as we can. For example:

- Please consider volunteering as a Class Rep when volunteers are invited at the start of the year
- Please volunteer your views on any or all parts of the course either to the Course Organiser, Course Instructors, or you Class Reps.
- Please fill in the Moodle feedback forms as often as you’re asked. Moodle is now compatible with smartphones and tablets, so if you have one of these, please bookmark Moodle and save your login details on it, so that you can fill in feedback when given a few minutes to do so in class. If you don’t have a suitable device to hand, then please still return your Moodle feedback on a laptop or desktop machine.
Information about the Examination

You will be assessed by examination in the Easter Term. Two theory papers each count for 35% of the total marks, and a written practical paper counts for 30%. All papers last for three hours.

Paper 1 is an essay paper based directly on the lecture material. There are three sections:

- **Section A**: Genes and the Nucleus, based on the Michaelmas term's lectures
- **Section B**: Cell Function, based on the Lent Term lectures on Organelle Biogenesis, Cytoskeleton, Membrane Traffic, Intercellular Communication
- **Section C**: Development, based on the Lent Term and Easter Term Developmental Biology Lectures

Candidates are required to answer four questions, including at least one from each section. Each essay will carry equal weight.

Paper 2 is a paper consisting of two sections given equal marks.

- **Section A**: Eight short answer questions on the whole course; candidates must answer all eight questions.
- **Section B**: More general integrative essay questions, or essay questions that explicitly require material from more than one block of lectures. Candidates must answer two questions out of at least five set.

Written Practical Paper. Candidates must answer eight questions, out of nine set. These require analysis and interpretation of experimental data, and understanding of the methods used to obtain them, based on the experiments performed and information presented in the practical course, including the Demonstration Practicals. The examiners envisage that each question should take on average around 15 minutes to answer, thereby leaving candidates a generous amount of time in which to read the paper, should they so wish.

What the examiners are looking for

We are looking for evidence of a good, intellectually critical understanding of the course material, based on experimental evidence. Ways in which you can convince the examiners that you have acquired this include the following:

- Some detailed factual information is a minimal requirement, but it must be integrated strongly into an overall context, and presented in a way that builds up an intellectually coherent view of the topic. It is not enough just to reproduce facts or models that you have learned.
- Cell and Developmental Biology is an experimental subject. You are therefore expected to base any models or assertions you present on the experimental logic that supports them, as far as is possible, using knowledge acquired from lectures and recommended reading.
- Write legibly. Make sure you understand the question asked, and answer it, not the question you would like to have been asked. Organise your time so that you do justice to all the areas of knowledge you write about. In data analysis or problem questions, explain your logic - even if you don't get the right answer, you will get some credit for using the right logic.

Faculty of Biology criteria on classing of essay answers:
https://www.biology.cam.ac.uk/exams/AllExams/marketing-tripos-essays/marketing-tripos-page

Past Examination Papers

Electronic copies of the papers can be accessed on the CDB Moodle site.
Supervisors can also access solutions to analytical or problem-type answers to previous years’ Practical Papers, via the Supervisors’ site. These solutions are not confidential and supervisors may share them with students. However, we do not provide solutions directly to students, to allow supervisors to set these questions for supervisions, without their supervisees having access to the solutions beforehand.

Senior Examiner Past Exam Reports:

Recent Senior Examiner’s reports on the CDB exam and the quality of its answers can give you additional insights into what Examiners are looking for: https://www.biology.cam.ac.uk/exams/nst-exams/senior-exam-reports/senior-examiner

Plagiarism:

In general, plagiarism can be defined as:
The unacknowledged use of the work of others as if this were your own original work.

In the context of an examination, this amounts to:
Passing off the work of others as your own to gain unfair advantage.

Such use of unfair means will not be tolerated by the University; if detected, the penalty may be severe and may lead to disciplinary proceedings being taken against you.

For more details, see: https://www.biology.cam.ac.uk/exams/AllExams/plagiarism
Course Management and Student Feedback

The course is overseen by a Management Committee, consisting of those who teach, examine or directly support the course, and the Teaching Coordinators of participating departments or their nominated deputies. The committee decides broadly on the content of lectures and practicals, and has the responsibility for organising and delivering these. The day-to-day running of the course is devolved to a small Core Committee, who act as course organisers (see below). This group meets with student representatives (chosen by you) and lecturers at the end of every term (the Consultative Committee) to look at the results of questionnaire returns and find out your views about the course.

The course is revised on a yearly basis in the light of comments made by you in questionnaires (distributed with lecture handouts) and by your representatives on the Consultative Committee which meets each Term.

Minutes of Consultative Committees and Analysis of Student Questionnaires

The minutes of Consultative Committee meetings and analysis of student questionnaires can be accessed from the Cell and Developmental Biology Moodle site.

Dates of meetings of the Consultative Committee for 2019 – 20

Tentatively (dates to be confirmed): Meetings are held on Tuesdays and will start at 4pm on the following dates: 26 Nov 2019, 10 Mar 2020 and 9 June 2020.

Course Core Committee 2019 – 2020

Prof Jim Haseloff (Plant Sciences); Chair of Management Committee and Course Organiser
Dr Cahir O’Kane, Genetics
Dr Juan Mata, Biochemistry
Dr Torsten Krude, Zoology

The Course Organisers for CDB and for Part IB Biochemistry and Molecular Biology also attend each other’s Core or Management Committee meetings.

Contact information:

<table>
<thead>
<tr>
<th>Contact</th>
<th>Name</th>
<th>Email</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair of Management Committee</td>
<td>Prof Jim Haseloff</td>
<td>cdb@gen.cam.ac.uk</td>
<td>Academic issues relating to the course, e.g. the organisation/timetabling of lectures and practicals.</td>
</tr>
<tr>
<td>Teaching Administrator</td>
<td>Billy Curtis, Genetics</td>
<td>cdb@gen.cam.ac.uk</td>
<td>Organisation of meetings of the Consultative & Management Committees</td>
</tr>
<tr>
<td>Practical Laboratory Technician</td>
<td>Jacek Zalewski, Zoology</td>
<td>jz328@cam.ac.uk</td>
<td>Organisation of the practical laboratory (but NOT practical teaching or content)</td>
</tr>
</tbody>
</table>